Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Immunol ; 15: 1384039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726000

RESUMEN

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Animales , Microambiente Tumoral/inmunología , Ensayos Clínicos como Asunto , Antígenos de Neoplasias/inmunología
2.
Cell Tissue Res ; 395(3): 227-250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244032

RESUMEN

The promising field of regenerative medicine is thrilling as it can repair and restore organs for various debilitating diseases. Mesenchymal stem cells are one of the main components in regenerative medicine that work through the release of secretomes. By adopting the use of the secretome in cell-free-based therapy, we may be able to address the challenges faced in cell-based therapy. As one of the components of cell-free-based therapy, secretome has the advantage of a better safety and efficacy profile than mesenchymal stem cells. However, secretome has its challenges that need to be addressed, such as its bioprocessing methods that may impact the secretome content and its mechanisms of action in clinical settings. Effective and standardization of bioprocessing protocols are important to ensure the supply and sustainability of secretomes for clinical applications. This may eventually impact its commercialization and marketability. In this review, the bioprocessing methods and their impacts on the secretome profile and treatment are discussed. This improves understanding of its fundamental aspects leading to potential clinical applications.


Asunto(s)
Células Madre Mesenquimatosas , Secretoma , Humanos , Medicina Regenerativa/métodos , Tratamiento Basado en Trasplante de Células y Tejidos
3.
Acta Trop ; 251: 107122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246399

RESUMEN

Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.


Asunto(s)
Strongyloides stercoralis , Estrongiloidiasis , Vacunas , Femenino , Animales , Ratones , Strongyloides stercoralis/genética , Inmunoglobulina G , Estrongiloidiasis/prevención & control , Inmunización , Vacunación , Adyuvantes Inmunológicos , Citocinas/metabolismo , Ratones Endogámicos BALB C
4.
Front Mol Neurosci ; 16: 1173433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602192

RESUMEN

Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.

5.
Front Med (Lausanne) ; 10: 1195374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547615

RESUMEN

The vital role of the intestines as the main site for the digestion and absorption of nutrients for the body continues subconsciously throughout one's lifetime, but underneath all the complex processes lie the intestinal stem cells and the gut microbiota that work together to maintain the intestinal epithelium. Intestinal stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells originate, and the gut microbiota refers to the abundant collection of various microorganisms that reside in the gastrointestinal tract. Both reside in the intestines and have many mechanisms and pathways in place with the ultimate goal of co-managing human gastrointestinal tract homeostasis. Based on the abundance of research that is focused on either of these two topics, this suggests that there are many methods by which both players affect one another. Therefore, this review aims to address the relationship between ISC and the gut microbiota in the context of regenerative medicine. Understanding the principles behind both aspects is therefore essential in further studies in the field of regenerative medicine by making use of the underlying designed mechanisms.

6.
Mol Biol Rep ; 50(5): 4653-4664, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37014570

RESUMEN

Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.


Asunto(s)
Bacteriófagos , Neoplasias , Animales , Biblioteca de Péptidos , Péptidos/química , Neoplasias/diagnóstico por imagen , Imagen Molecular , Tecnología
7.
Artículo en Inglés | MEDLINE | ID: mdl-36674401

RESUMEN

(1) Background: The assessment of vaccine effectiveness against the Omicron variant is vital in the fight against COVID-19, but research on booster vaccine efficacy using nationwide data was lacking at the time of writing. This study investigates the effectiveness of booster doses on the Omicron wave in Malaysia against COVID-19 infections and deaths; (2) Methods: This study uses nationally representative data on COVID-19 from 1 January to 31 March 2022, when the Omicron variant was predominant in Malaysia. Daily new infections, deaths, ICU utilization and Rt values were compared. A screening method was used to predict the vaccine effectiveness against COVID-19 infections, whereas logistic regression was used to estimate vaccine effectiveness against COVID-19-related deaths, with efficacy comparison between AZD1222, BNT162b2 and CoronaVac; (3) Results: Malaysia's Omicron wave started at the end of January 2022, peaking on 5 March 2022. At the time of writing, statistics for daily new deaths, ICU utilization, and effective reproductive values (Rt) were showing a downtrend. Boosted vaccination is 95.4% (95% CI: 95.4, 95.4) effective in curbing COVID-19 infection, compared to non-boosted vaccination, which is 87.2% (95% CI: 87.2, 87.2). For symptomatic infection, boosted vaccination is 97.4% (95% CI: 97.4, 97.4) effective, and a non-boosted vaccination is 90.9% (95% CI: 90.9, 90.9). Against COVID-19-related death, boosted vaccination yields a vaccine effectiveness (VE) of 91.7 (95% CI: 90.6, 92.7) and full vaccination yields a VE of 65.7% (95% CI: 61.9, 69.1). Looking into the different vaccines as boosters, AZD1222 is 95.2% (CI 95%: 92.7, 96.8) effective, BNT162b2 is 91.8% (CI 95%: 90.7, 92.8) effective and CoronaVac is 88.8% (CI 95%: 84.9, 91.7) effective against COVID-19 deaths. (4) Conclusions: Boosters are effective in increasing protection against COVID-19, including the Omicron variant. Given that the VE observed was lower, CoronaVac recipients are encouraged to take boosters due to its lower VE.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Malasia/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vacunación
8.
Acta Trop ; 239: 106796, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586174

RESUMEN

It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.


Asunto(s)
Helmintiasis , Infecciones por Uncinaria , Vacunas , Animales , Humanos , Suelo/parasitología , Infecciones por Uncinaria/epidemiología , Ascaris lumbricoides , Ancylostomatoidea , Necator americanus , Helmintiasis/prevención & control , Helmintiasis/epidemiología , Heces/parasitología
9.
Front Cell Dev Biol ; 10: 1005926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407112

RESUMEN

Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.

10.
PeerJ ; 10: e13704, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979475

RESUMEN

HIV-1 derived lentiviral vector is an efficient transporter for delivering desired genetic materials into the targeted cells among many viral vectors. Genetic material transduced by lentiviral vector is integrated into the cell genome to introduce new functions, repair defective cell metabolism, and stimulate certain cell functions. Various measures have been administered in different generations of lentiviral vector systems to reduce the vector's replicating capabilities. Despite numerous demonstrations of an excellent safety profile of integrative lentiviral vectors, the precautionary approach has prompted the development of integrase-deficient versions of these vectors. The generation of integrase-deficient lentiviral vectors by abrogating integrase activity in lentiviral vector systems reduces the rate of transgenes integration into host genomes. With this feature, the integrase-deficient lentiviral vector is advantageous for therapeutic implementation and widens its clinical applications. This short review delineates the biology of HIV-1-erived lentiviral vector, generation of integrase-deficient lentiviral vector, recent studies involving integrase-deficient lentiviral vectors, limitations, and prospects for neoteric clinical use.


Asunto(s)
VIH-1 , Integrasas , Integrasas/genética , Vectores Genéticos/genética , Transgenes , VIH-1/genética , Genoma
11.
Mol Biol Rep ; 49(11): 10593-10608, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35674877

RESUMEN

BACKGROUND: Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this. METHODS AND RESULTS: This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects. CONCLUSIONS: There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.


Asunto(s)
Anticuerpos , Proteínas , Animales , Mamíferos
12.
Biomedicines ; 10(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453554

RESUMEN

The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one's flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs' unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells' activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.

13.
Immunobiology ; 227(3): 152201, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35272134

RESUMEN

Cellular immunity is a critical factor determining the safety and efficacy of newly developed vaccines against Mycobacterium tuberculosis infection. Crosstalk between CD4+ and CD8+ T-lymphocytes plays central roles in perpetuating the cytotoxic killing to the infected cells for host clearance. Our study proposed a novel alternating MHC-class II restricted peptide vaccination strategy to enhance the antigen-specific CD8+ T-cell activity against alpha-crystalline heat-shock protein (HspX) in C57BL/6 mice. Alternating peptide vaccination significantly stimulated a prominent HspX-specific CD8+ T-cell response with elevated Th1 and Th17 responses, without interference from Tregs suppression. Heightened central and effector CD8 memory were apparent in mice receiving alternating peptide vaccine, indicating a persisting recall immunity against HspX antigen. It was unlikely for alternating peptide vaccine to cause dysregulation in CD8+ T-cells as shown by minimal expression of KLRG1, PD1, LAG3, and CTLA-4 markers. Strong cytotoxic T-lymphocyte (CTL) responses were demonstrated in mice administrated with alternating peptide vaccines, suggesting its capacity in executing killing effector function against targeted cells. In conclusion, our novel vaccination strategy delineated potential benefits of alternating MHC-II peptides to invigorate efficient cytotoxic CD8+ T-cell responses against HspX antigen. Such approach might be applicable to serve as alternative immunotherapy for latent tuberculosis infection in future.


Asunto(s)
Antineoplásicos , Vacunas contra el Cáncer , Mycobacterium tuberculosis , Tuberculosis , Animales , Linfocitos T CD8-positivos , Proteínas de Choque Térmico , Ratones , Ratones Endogámicos C57BL , Péptidos , Linfocitos T Citotóxicos , Tuberculosis/prevención & control , Vacunación , Vacunas de Subunidad
14.
Front Immunol ; 13: 833715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242137

RESUMEN

2020 will be marked in history for the dreadful implications of the COVID-19 pandemic that shook the world globally. The pandemic has reshaped the normality of life and affected mankind in the aspects of mental and physical health, financial, economy, growth, and development. The focus shift to COVID-19 has indirectly impacted an existing air-borne disease, Tuberculosis. In addition to the decrease in TB diagnosis, the emergence of the TB/COVID-19 syndemic and its serious implications (possible reactivation of latent TB post-COVID-19, aggravation of an existing active TB condition, or escalation of the severity of a COVID-19 during TB-COVID-19 coinfection), serve as primary reasons to equally prioritize TB. On a different note, the valuable lessons learnt for the COVID-19 pandemic provide useful knowledge for enhancing TB diagnostics and therapeutics. In this review, the crucial need to focus on TB amid the COVID-19 pandemic has been discussed. Besides, a general comparison between COVID-19 and TB in the aspects of pathogenesis, diagnostics, symptoms, and treatment options with importance given to antibody therapy were presented. Lastly, the lessons learnt from the COVID-19 pandemic and how it is applicable to enhance the antibody-based immunotherapy for TB have been presented.


Asunto(s)
Anticuerpos/uso terapéutico , COVID-19/epidemiología , COVID-19/terapia , Coinfección/terapia , Tuberculosis/epidemiología , Tuberculosis/terapia , Anticuerpos/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , Coinfección/diagnóstico , Coinfección/epidemiología , Coinfección/inmunología , Humanos , Inmunoterapia , Mycobacterium tuberculosis , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2/inmunología , Tuberculosis/diagnóstico , Tuberculosis/inmunología
15.
Medicina (Kaunas) ; 58(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35208514

RESUMEN

Background and Objectives: Abnormal expressions of CD74 and human leukocyte antigen-DR alpha (HLA-DRA) have been reported in various cancers, though their roles in cervical cancer remain unclear. This study aimed to evaluate the gene and protein expressions of CD74 and HLA-DRA in the progression from normal cervix to precancerous cervical intraepithelial neoplasia (CIN) and finally to squamous cell carcinoma (SCC). Materials and Methods: The gene expression profiles of CD74 and HLA-DRA were determined in formalin-fixed paraffin-embedded tissues, with three samples each from normal cervixes, human papillomavirus type 16/18-positive, low-grade CIN (LGCIN), high-grade CIN (HGCIN), and squamous cell carcinoma (SCC) using Human Transcriptome Array 2.0. Immunohistochemical expression of the proteins was semi-quantitatively assessed in another cohort of tissue microarray samples comprising 7 normal cervix cases, 10 LGCIN, 10 HGCIN, and 95 SCC. Results: The transcriptomics profile and proteins' expression demonstrated similar trends of upregulation of CD74 and HLA-DRA from normal cervix to CIN and highest in SCC. There was a significant difference in both proteins' expression between the histological groups (p = 0.0001). CD74 and HLA-DRA expressions were significantly associated with CIN grade (p = 0.001 and p = 0.030, respectively) but not with the subjects' age or SCC stage. Further analysis revealed a positive correlation between CD74 and HLA-DRA proteins. Conclusions: CD74 appears to promote cervical carcinogenesis via oncogenic signalling mechanisms and may serve as a potential antitumour target. Additionally, the upregulation of HLA-DRA, often associated with stronger immunogenicity, could be a promising biomarker for developing immunotherapies.


Asunto(s)
Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Carcinogénesis/genética , Carcinogénesis/metabolismo , Cuello del Útero/metabolismo , Cuello del Útero/patología , Femenino , Cadenas alfa de HLA-DR/genética , Cadenas alfa de HLA-DR/metabolismo , Humanos , Neoplasias del Cuello Uterino/patología
16.
Biomedicines ; 10(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35052787

RESUMEN

Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.

17.
Biotechnol Appl Biochem ; 69(1): 70-76, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33258152

RESUMEN

Lymphatic filariasis is a neglected parasitic disease that affects millions in tropical and subtropical countries and is caused by Wuchereria and Brugia species. Specific and sensitive detection methods are essential in mapping infected areas where rapid tests are needed to cover underdeveloped and remote regions, which facilitates eliminating the disease as a public health problem. A few commercialized rapid tests based on antigen or antibody detection are available, but the former only detects infection by Wuchereria species and cross-reacts with nonlymphatic filaria, whereas antibody detection might provide positive results of previous infection. Here, we report the production of three different recombinant immunoglobulin gamma (IgG)1 antibodies based on scFvs previously generated via human antibody phage display technology, that is, anti-BmR1 clone 4, anti-BmXSP clone 5B, and anti-BmXSP clone 2H2. The scFv sequences were cloned into a pCMV-IgG1 vector, then transfected into a HEK293F cell line. The generated antibodies were found to be able to bind to their respective targets even at relatively low concentration. Conjugation of Fc to scFv induces binder stability and provides multiple labeling sites for probes and signaling molecules that can be used in rapid tests.


Asunto(s)
Antígenos Helmínticos , Filariasis Linfática , Filariasis Linfática/diagnóstico , Humanos , Inmunoglobulina G , Proteínas Recombinantes
18.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830303

RESUMEN

The rapid mutation of the SARS-CoV-2 virus is now a major concern with no effective drugs and treatments. The severity of the disease is linked to the induction of a cytokine storm that promotes extensive inflammation in the lung, leading to many acute lung injuries, pulmonary edema, and eventually death. Mesenchymal stem cells (MSCs) might prove to be a treatment option as they have immunomodulation and regenerative properties. Clinical trials utilizing MSCs in treating acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) have provided a basis in treating post-COVID-19 patients. In this review, we discussed the effects of MSCs as an immunomodulator to reduce the severity and death in patients with COVID-19, including the usage of MSCs as an alternative regenerative therapy in post-COVID-19 patients. This review also includes the current clinical trials in utilizing MSCs and their potential future utilization for long-COVID treatments.


Asunto(s)
COVID-19/complicaciones , Inmunomodulación/fisiología , Trasplante de Células Madre Mesenquimatosas , Regeneración/fisiología , COVID-19/patología , COVID-19/terapia , COVID-19/virología , Humanos , Pulmón/patología , Pulmón/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2/aislamiento & purificación , Síndrome Post Agudo de COVID-19
19.
Hum Vaccin Immunother ; 17(9): 2981-2994, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33989511

RESUMEN

Cervical cancer is ranked as the fourth most common cancer in women worldwide. Monoclonal antibody has created a new dimension in the immunotherapy of many diseases, including cervical cancer. The antibody's ability to target various aspects of cervical cancer (oncoviruses, oncoproteins, and signaling pathways) delivers a promising future for efficient immunotherapy. Besides, technologies such as hybridoma and phage display provide a fundamental platform for monoclonal antibody generation and create the opportunity to generate novel antibody classes including, T cell receptor (TCR)-like antibody. In this review, the current immunotherapy strategies for cervical cancer are presented. We have also proposed a novel concept of T cell receptor (TCR)-like antibody and its potential applications for enhancing cervical cancer therapeutics. Finally, the possible challenges in TCR-like antibody application for cervical cancer therapeutics have been addressed, and strategies to overcome the challenges have been highlighted to maximize the therapeutic benefits.


Asunto(s)
Neoplasias del Cuello Uterino , Anticuerpos Monoclonales , Femenino , Humanos , Factores Inmunológicos , Inmunoterapia , Receptores de Antígenos de Linfocitos T/genética , Neoplasias del Cuello Uterino/terapia
20.
ESC Heart Fail ; 7(6): 4465-4471, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32945150

RESUMEN

AIMS: Elevated heart rate (HR) in heart failure (HF) is associated with worse outcomes, particularly in acute HF (AHF). HR reduction with ivabradine reduces cardiovascular events in HF patients with reduced ejection fraction. The present trial aimed to test the hypothesis that the early HR reduction using ivabradine improves clinical outcomes in patients with AHF. METHODS AND RESULTS: SHIFT-AHF is a prospective, multi-centre, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of ivabradine when adding to standard therapy in AHF patients (SHIFT-AHF). The trial will include 674 AHF patients with left ventricular ejection fraction < 45% and New York Heart Association functional classes III-IV. Participants were enrolled from March 2020 and will be followed up until December 2022. Patients are randomized to treatment with ivabradine or placebo (randomization 1:1). After allocation, the dose of ivabradine is titrated according to HR. Six months' follow-up and three control visits (7, 90, and 180 days after enrolment) are required for every participant. Assessment involves clinical examination, laboratory tests, echocardiography, electrocardiography, heart rhythm, cardiac function, and quality of life. The primary endpoint is a composite of all-cause mortality or re-admission due to worsening HF. Secondary endpoints include the assessments of cardiac remodelling, cardiac functional capacity, and quality of life. CONCLUSIONS: The SHIFT-AHF trial will shed further light on the role of early HR reduction using ivabradine in patients with AHF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...